Anihilace pozitronů v letu

- v pevné látce se e⁺ termalizuje během několika ps
- termalizovaný pozitron \rightarrow anihilace v klidu

dominantní proces v pevných látkách

• netermalizovaný pozitron \rightarrow anihilace v letu (AiF)

vzácný proces ~ 1% pozitronů

Anihilace pozitronů v letu

H.J. Bhabha, H.R. Hulme, Proc. Roy. Soc. (London) A146, 723 (1934)

- T_+ kinetická energie pozitronu, r_0 klasický poloměr elektronu, m_0c^2 klidová energie elektronu Z_+ protonové číslo terčíku, α konstanta jemné struktury
- důležitý pouze pro materiály s vysokým Z a pro vysoké energie e+

Anihilace pozitronů v letu

- 2-γ anihilace v letu (TQAF)
- cross-section (Dirac 1934)

$$\sigma_{TQAF} = \pi r_0^2 \frac{1}{\gamma + 1} \left[\frac{\gamma^2 + 4\gamma + 1}{\gamma^2 - 1} \ln \left(\gamma + \sqrt{\gamma^2 - 1} \right) - \frac{\gamma + 3}{\sqrt{\gamma^2 - 1}} \right]$$

- $\gamma = (T_+ + m_0 c^2) / m_0 c^2$, r_0 klasické poloměr elektronu $m_0 c^2$ – klidová energie elektronu, T_+ - kinetická energie pozitronu
- hlavní kanál AiF

- pulsy z HPGe detetorů vzorkovány v reálném čase 12-bit digitizérem (samplovací perioda 20 ns)
- samplované pulsy jsou off-line pomocí software
- semi-digitální konfigurace:
 - detektorové pulsy jsou tvarovány do semi-Gaussovského tvaru před samplováním

J. Čížek et al., Nucl. Instrum. Methods A 623, 982 (2010)

1 waveform = 1000 points

sampling rate = 50 MHz (sampling interval = 20 ns)

2-D histogram normalizovaných pulsů

2-D histogram normalizovaných pulsů

2-D CDB spektrum

• Al (99.9999%)

suma energií anihilačních fotonů versus rozdíl těchto energií

 $E_1 + E_2 - 2m_0c^2$ versus $E_1 - E_2$

2-D CDB spektrum – efekt digitálních tvarových filtrů

• semi-digitální konfigurace

• Al (99.9999%)

monoenergetické pomalé pozitrony

- Magneticaky vedený svazek pozitronů
- Helmholtz Zentrum Dresden-Rossendorf
- Energie pozitronů nastavitelná v rozmezí 0.027 36 keV

• rychlé pozitrony se spojitým spektrem energií

- ⁶⁸Ge/⁶⁸Ga positron generator, $T_{+,max} = 1897$ keV
- tvorba párů pomocí brzdného záření (GiPS), $T_{+,max} = 16 \text{ MeV}$
- ELBE, Helmholtz Zentrum Dresden-Rossendorf

- monoenergetické pomalé pozitrony, $T_+ = 35 \text{ keV}$
- Fe terčík (tloušťka 0.5 mm)

- monoenergetické pomalé pozitrony, $T_+ = 35 \text{ keV}$
- Fe terčík (tloušťka 0.5 mm)

2-D CDB spektrum:

součet energií anihilačních fotonů

$$E_1 + E_2 - 2m_0c^2$$

versus rozdíl těchto energií

$$E_{1} - E_{2}$$

- monoenergetické pomalé pozitrony, $T_{+} = 35 \text{ keV}$
- Fe terčík (tloušťka 0.5 mm)

- monoenergetické pomalé pozitrony, $T_+ = 35 \text{ keV}$
- Fe terčík (tloušťka 0.5 mm)

- monoenergetické pomalé pozitrony, $T_+ = 35 \text{ keV}$
- Fe terčík (tloušťka 0.5 mm)

- monoenergetické pomalé pozitrony, $T_+ = 35 \text{ keV}$
- Fe terčík (tloušťka 0.5 mm)

CDB spectra – monoenergetic slow positrons

- monoenergetic slow positrons, $T_{+} = 35 \text{ keV}$
- thick Fe target (thickness 0.5 mm)

- monoenergetické pomalé pozitrony, $T_+ = 35 \text{ keV}$
- Fe terčík (tloušťka 0.5 mm)

zákon zachování energie & hybnosti

• TQAF zmizí pro opravdu pomalé pozitrony

- Fe terčík (tloušťka 0.5 mm)
- vertikální řez v rozsahu $-192 \text{ keV} < E_1 E_2 < 192 \text{ keV}$

- Fe terčík (tloušťka 0.5 mm)
- vertikální řez v rozsahu $-192 \text{ keV} < E_1 E_2 < 192 \text{ keV}$

- Fe terčík (tloušťka 0.5 mm)
- vertikální řez v rozsahu $-192 \text{ keV} < E_1 E_2 < 192 \text{ keV}$

pravděpodobnost anihilace e⁺
 během termalizace od T₊+ dT₊ do T₊

$$dP(T_{+}) = -\frac{N_{A}\rho Z}{A} \frac{\sigma_{TQAF}(T_{+})}{S(T_{+})} dT_{+}$$

• e⁺ stopping power

$$S(T_{+}) = \frac{dT_{+}}{dx} = \rho(a_1 Z + a_2) \frac{\gamma^{2.4}}{\gamma^{1.9} - 1}$$
$$\gamma = \frac{T_{+} + m_0 c^2}{m_0 c^2} \qquad a_1 = -5.95 \text{ g}^{-1} \text{cm}^2 \text{keV}$$
$$a_2 = 928 \text{ g}^{-1} \text{cm}^2 \text{keV}$$

R.K. Barta e al., Nucl. Phys.A 156, 314 (1970)

- Fe terčík (tloušťka 0.5 mm)
- vertikální řez v rozsahu $-192 \text{ keV} < E_1 E_2 < 192 \text{ keV}$
- TQAF v objemových terčících obsahuje informace o termalizaci e⁺

- Fe terčík (tloušťka 0.5 mm)
- horizontální řez v rozsahu 5 keV $< E_1 + E_2 2m_0c^2 < 35$ keV

- Fe terčík (tloušťka 0.5 mm)
- horizontální řez v rozsahu 5 keV < $E_1 + E_2 2m_0c^2 < 35$ keV

- Fe terčík (tloušťka 0.5 mm)
- horizontální řez v rozsahu 5 keV < $E_1 + E_2 2m_0c^2 < 35$ keV

• Fe terčík (tloušťka 0.5 mm)

- Fe terčík (tloušťka 0.5 mm)
- 3-γ o-Ps anihlace na povrchu

$$E_1 + E_2 + E_3 = 2m_0c^2$$

- Fe terčík (tloušťka 0.5 mm)
- 3-γ o-Ps anihlace na povrchu

$$E_1 + E_2 + E_3 = 2m_0c^2$$

• rychlé pozitrony, spojité spektrum energií

 68 Ge/ 68 Ga, Mg target, $T_{+} \le 1897 \text{ keV}$

- větší vzdálenost detektorů
- limitovaný rozsah úhlů θ

- rychlé pozitrony, spojité spektrum energií
- vyšší kinematický cut-off

• GiPS: vyšší pozadí kvůli Comptonově rozptylu brzdného záření

• 'vnitřní hrana' → konečný rozměr detektoru

- 'vnitřní hrana' \rightarrow konečný rozměr detektoru
- 'vnější hrana' → maximální Dopplerův posuv (fyzikální efekt)
- annihilace v klidu: převážně s valenčními elektrony s nízkou hybností
- annihilace v letu: se všemi elektrony se stejnou pravděpodobností
 ↓
 větší Dopplerovské rozšíření → spektroskopie core e⁻

A.W. Hunt et al., Phys. Rev. Lett. 86, 5612 (2001)

- 'vnitřní hrana' \rightarrow konečný rozměr detektoru
- 'vnější hrana' → maximální Dopplerův posuv (fyzikální efekt)
- Dopplerovské rozšíření vnější hrany:
 - akumulované vertikální řezy podél TQAF křivky

- rychlé pozitrony: ⁶⁸Ge/⁶⁸Ga pozitronový generátor
- objemový Mg terčík (tloušťka 10 mm)
- Dopplerovské rozšíření způsobené anihilací s core e-

- rychlé pozitrony: ⁶⁸Ge/⁶⁸Ga pozitronový generátor
- objemový Mg terčík (tloušťka 10 mm)
- Dopplerovské rozšíření způsobené anihilací s core e-

- rychlé pozitrony: ⁶⁸Ge/⁶⁸Ga pozitronový generátor
- objemový Mg terčík (tloušťka 10 mm)
- Dopplerovské rozšíření způsobené anihilací s core e-
- Mg: $1s^2 2s^2 2p^6 3s^2$

core e

- rychlé pozitrony: ⁶⁸Ge/⁶⁸Ga pozitronový generátor
- objemový Mg terčík (tloušťka 10 mm)
- Dopplerovské rozšíření způsobené anihilací s core e-
- Mg: $1s^2 2s^2 2p^6 3s^2$

core e

- rychlé pozitrony: ⁶⁸Ge/⁶⁸Ga pozitronový generátor
- objemový Mg terčík (tloušťka 10 mm)
- Dopplerovské rozšíření způsobené anihilací s core e-
- Mg: $1s^2 2s^2 2p^6 3s^2$

core e

- rychlé pozitrony: ⁶⁸Ge/⁶⁸Ga pozitronový generátor
- objemový Mg terčík (tloušťka 10 mm)
- Dopplerovské rozšíření způsobené anihilací s core e-
- Mg: $1s^2 2s^2 2p^6 3s^2$

core e

