Nafion

• Nafion – polymer na bázi teflonu (PTFE) obsahující sulfonovou funkční skupinu -SO₃H

Nafion

• Nafion – polymer na bázi teflonu (PTFE) obsahující sulfonovou funkční skupinu -SO₃H

P.J. Brookman, J.W. Nicholsonin: Developments in Ionic Polymers, vol. 2, eds. A. D. Wilson and H. J. Prosser (Elsevier Applied Science Publishers: London, 1986)

Nafion

- Nafionová membrána N-1110 (Du Pont), povrchová hustota 500 g m⁻², EW = 1100 g
- tloušťka 0.254 mm
- vzorky pro pozitronovou anihilaci: sandwich složený ze 4 membrán

Nafion – výchozí stav

Nafion – sušení na 130°C

- kinetika sušení na 130°C dva procesy:
- -rychlý: t₁ = 1.0 ± 0.4 min
- $-\text{pomalý: } t_2 = 8 \pm 2 \text{ min}$

relativní úbytek hmotnosti: $w_r = ae^{-\frac{t}{t_1}} + ce^{-\frac{t}{t_2}}$

• obsah vody ve výchozím vzorku Nafionu: (6.7 ± 0.8) wt.%

Nafion – sušení na 130°C

- Nafion N1110 výchozí vzorek
- anihilace pozitronů:
 - $\tau_1 = 205(9) \text{ ps}, I_1 = 5.2(8) \%$
 - $\tau_2 = 430(3) \text{ ps}, I_2 = 80(1) \%$
- anihilace Ps:
- p-Ps $\tau_{p-Ps} = 130(5) \text{ ps}, I_{p-Ps} = 3.7(4) \%$ $\tau_{p-Ps} = 130(6) \text{ ps}, I_{p-Ps} = 3.5(4) \%$ o-Ps $\tau_{o-Ps} = 3.10(3) \text{ ns}, I_{o-Ps} = 11.1(4) \%,$ $\tau_{o-Ps} = 3.09(2) \text{ ns}, I_{o-Ps} = 10.5(4) \%,$ $\sigma_{o-Ps} = 1.06(6) \text{ ns}$ $\sigma_{o-Ps} = 1.00(3) \text{ ns}$

vysušený stav (130°C, 2h)

 $\tau_1 = 204(8) \text{ ps}, I_1 = 6.0(5) \%$

 $\tau_2 = 442(5) \text{ ps}, I_2 = 80.1(4) \%$

• Žádné významné změny pozitronových parametrů po vysušení

Nafion N1110 – rodělení velikostí volných objemů

t (min)

t (min)

- kinetika absorpce dva procesy:
- velmi rychlý proces
- charakteristický čas $t_1 = (11 \pm 1) s$
- zaplňování hydrofilních iontových klastrů vodou

- pomalý proces
- charakteristický čas $t_2 \approx 10\text{--}60 \text{ min}$
- expanze iontových klastrů do volných objemů

- vliv vody na volné objemy v Nafionu
- expanze objemu \rightarrow nárůst τ_1 , τ_2
- vaření ve vodě 30 s \rightarrow pouze rychlý proces
- vaření ve vodě 2 h \rightarrow oba procesy (rychlý i pomalý)

- vliv absorbované vody na volné objemy v Nafionu
- τ_{o-Ps} klesá
- σ_{o-Ps} nejdřív roste, pak klesá
- I_{Ps} narůstá

- vliv absorbované vody na volné objemy v Nafionu
- τ_{o-Ps} klesá
- σ_{o-Ps} nejdřív klesá, pak roste

- voda absorbovaná v iontových klastrech:
- nárůst objemu
- rozdělení volných objemů

• střední volný objem V_{mean}

rychlý proces: V_{mean} klesá kvůli expanzi iontových klastrů a dělení volných objemů
široké rozdělení volných objemů

- **pomalý proces:** dělení volných objemů dokončeno → většina volných objemů rozdělená
- úzké rozdělení volných objemů

- střední volný objem
- - Nafion-N117, H.S. Sodaye et al. J. Polymer Sci. B 35, 771 (1997)

• zobecnění Tao-Eldrupova modelu na velké póry (Ito 1999)

- zobecnění Tao-Eldrupova modelu na velké póry (Ito 1999)
- Ps uvnitř póru $r < R R_a$

- žádná interakce se stěnou póru: $\lambda_{o-Ps} = \lambda_{3-\gamma} = \frac{1}{142} \text{ ns}^{-1}$

- Ps blízko stěny R $R_a < r < R + \Delta R$
 - interakce Ps se stěnou póru: $\lambda_{o-Ps} = \lambda_{pickoff}(R) + \lambda_{3-\gamma}$

$$\lambda_{pickoff} = 2 \left[1 - \frac{R}{R + \Delta R} + \frac{1}{2\pi} \sin\left(\frac{2\pi R}{R + \Delta R}\right) \right]$$

$$\lambda_{o-Ps} = (1 - f(R))(\lambda_{pickoff}(R) + \lambda_{3-\gamma}) + f(R)\lambda_{3-\gamma}$$

$$\lambda_{o-Ps} = (1 - f(R))(\lambda_{pickoff}(R)) + \lambda_{3-\gamma}$$

• zobecnění Tao-Eldrupova modelu na velké póry (Ito 1999)

 $\lambda_{o-Ps} = (1 - f(R))(\lambda_{pickoff}(R)) + \lambda_{3-\gamma}$

• pravděpodobnost výskytu Ps uvnitř koule o poloměru R - R_a

$$f(R) = \frac{3}{4\pi} \frac{1}{(R + \Delta R)^3} \int_{0}^{2\pi\pi} \int_{0}^{R-R_a} \rho(r) r^2 \sin\theta dr d\theta d\phi$$
$$\xi = \frac{r}{R + \Delta R} \qquad 0 \le \xi \le 1$$

$$f(R) = \frac{3}{4\pi} \int_{0}^{2\pi\pi} \int_{0}^{(R-R_a)/(R+\Delta R)} \int_{0}^{(R+\Delta R)} \rho(\xi) \xi^2 \sin\theta d\xi d\theta d\varphi$$

$$f(R) = \left(\frac{R - R_a}{R + \Delta R}\right)^b$$
 pokud $\rho(\xi) = 1 \Longrightarrow b = 3$

- zobecnění Tao-Eldrupova modelu na velké póry (Ito 1999)
- pravděpodobnost výskytu Ps uvnitř koule o poloměru R R_a

- zobecnění Tao-Eldrupova modelu na velké póry (Ito 1999)
- anihilační rychlost o-Ps v póru o poloměru *R*:

$$\lambda_{o-Ps} = \begin{cases} \lambda_{pickoff} \left(R \right) \left(1 - \left(\frac{R - R_a}{R + \Delta R} \right)^b \right) + \lambda_{3-\gamma} & R \ge R_a \\ \lambda_{pickoff} \left(R \right) + \lambda_{3-\gamma} & R < R_a \end{cases}$$

- $R_a = 0.8 \text{ nm}$
- *b* = 0.55
- $\Delta R = 0.1656 \text{ nm}$

Techniky pro měření Ps v porézních materiálech

- Dopplerovské rozšíření DB (Doppler broadening)
- Úhlové korelace ACAR (angular correlation)
- Měření doby letu Ps Ps-TOF (Ps time of flight)
- Měření doby života Ps
 PALS (positron annihilation lifetime spectroscopy)

Ps - TOF

• Měření doby letu pozitronia: Ps-TOF (Ps time of flight)

Techniky pro měření Ps v porézních materiálech - DB

Dopplerovské rozšíření DB (Doppler broadening)

3-γ anihilace o-Ps

- DB měření na svazku pomalých pozitronů s laditelnou energií
- vzorek: čisté Fe

Sintrování nanoprášků na bázi ZrO₂

Sintrování nanoprášků na bázi ZrO₂

- ZrO₂ + 3 mol.% Y₂O₃ (Z3Y)
- ZrO₂ + 3 mol.% Y₂O₃ + 1 mol. % Cr₂O₃ (Z3Y1C)

Sintrování nanoprášků na bázi ZrO₂

• ZrO₂ + 3 mol.% Y₂O₃ (Z3Y)

