Standardní schéma:

- J. Puska, R. Nieminen, J. Phys. F: Met. Phys. 13, 333 (1983)
- elektronová hustota atomová superpozice (ATSUP)

$$n_{-}(\mathbf{r}) = \sum_{i} n_{-}^{\mathrm{at}} \left(|\mathbf{r} - \mathbf{R}_{i}| \right)$$

- limit of pozitronové hustoty blížící se nule (vanishing positron density)
- doba života pozitronu: $\tau^{-1} = \pi r_e^2 c \int d\mathbf{r} |\psi^+(\mathbf{r})|^2 n_-(\mathbf{r}) \gamma [n_-(\mathbf{r})]$
- elektron-pozitronová korelace LDA nebo GGA aproximace
 E. Boroński and R. Nieminen, Phys. Rev. B 3820, 34 (1986) BN parametrizace
- modelování defektů supebuňky
- relaxace iontů kolem defektů

0.1

10 100

1000 10000

- Cu
- perfektní krystal
- elektronová hustota v rovině (001)

• Cu

- perfektní krystal
- $\tau = 114 \text{ ps}$
- pozitronová hustota v rovině (001)

- Cu
- vakance v poloze [1/2,1/2,0]
- elektronová hustota v rovině (001)

bcc Fe

$$\tau = \left(\pi r_0 c \int n_-(\mathbf{r}) n_+(\mathbf{r}) \gamma(n_-) \, d\mathbf{r}\right)^{-1}$$

2.0e-5 4.0e-5 6.0e-5

8.0e-5 1.0e-4 1.2e-4 1.4e-4

doba života $\tau_{\rm B} = 107 \text{ ps}$

pozitronová hustota v rovině (002)

bcc Fe - vakance

$$\tau = \left(\pi r_0 c \int n_-(\mathbf{r}) n_+(\mathbf{r}) \gamma(n_-) \, d\mathbf{r}\right)^{-1}$$

doba života $\tau_{\rm V} = 180 \ {\rm ps}$

pozitronová hustota v rovině (002)

5.0e-4 1.0e-3 1.5e-3 2.0e-3 2.5e-3

3.0e-3 3.5e-3

bcc Fe – di-vakance

$$\tau = \left(\pi r_0 c \int n_-(\mathbf{r}) n_+(\mathbf{r}) \gamma(n_-) \, d\mathbf{r}\right)^{-1}$$

doba života $\tau_{2V} = 199 \text{ ps}$

pozitronová hustota v rovině (002)

5.0e-4 1.0e-3 1.5e-3 2.0e-3

2.5e-3

Rozklad spekter dob života pozitronů

• traditiční přístup: suma diskrétních komponent

$$S(t) = \left(\sum_{i=1}^{n} \frac{I_i}{\tau_i} e^{-\frac{t}{\tau_i}}\right) \otimes R(t) + B \qquad \sum_{i=1}^{n} I_i = 1$$

• nový přístup: diskrétní komponenty + rozdělení velikostí klastrů

$$S(t) = \left(\sum_{i=1}^{n-1} \frac{I_i}{\tau_i} e^{-\frac{t}{\tau_i}} + I_d \left(\sum_{N=1}^{N_{\text{max}}} \nu_N\right)^{-1} \sum_{N=1}^{N_{\text{max}}} \frac{P(N)\nu_N}{\tau_N} e^{-\frac{t}{\tau_N}}\right) \otimes R(t) + B \qquad \sum_{i=1}^{n-1} I_i + I_d = 1$$

diskrétní komponenty příspěvek klastrů

- dislokace,

- volné pozitrony

Rozklad spekter dob života pozitronů

• příspěvek klastrů

$$I_d \left(\sum_{N=1}^{N_{\max}} \nu_N\right)^{-1} \sum_{N=1}^{N_{\max}} \frac{P(N)\nu_N}{\tau_N} e^{-\frac{t}{\tau_N}}$$

- τ_N doba života pozitronu zachyceného v klastru, který se skládá z N vakancí získáme teoretickým výpočtem
- každá komponenta je vážena faktorem $P(N)v_N$
- V_N specifická záchytová rychlost pro klastr skládající se z N vakancí

P(N) - relativní frakce klastrů složených z N vakancí

Specifická záchytová rychlost pro klastr složený z N vakancí

- účinný průřez pro záchyt pozitronu narůstá s rostoucí velikostí klastru
- malé klastry ($N \le 10$): $v_N \sim N$
- větší klastry (N > 10): v_N postupná saturace

R. M. Nieminen, J. Laakkonen, Appl. Phys.20, 181 (1979)

Vznik klastrů vakancí při silné plastické deformaci

• mnoho pokusů o posun skoku vlivem napětí

• Poissonovo rozdělení
$$P(N) = \frac{v_d^N e^{-v_d}}{N!} \qquad \sum_{N=1}^{N_{\text{max}}} P(N) = 1$$

• střední velikost klastrů vakancí: v_d

Rozklad spekter dob života pozitronů

• traditiční přístup: suma diskrétních komponent

$$S(t) = \left(\sum_{i=1}^{n} \frac{I_i}{\tau_i} e^{-\frac{t}{\tau_i}}\right) \otimes R(t) + B \qquad \sum_{i=1}^{n} I_i = 1$$

• nový přístup: diskrétní komponenty + rozdělení velikostí klastrů

$$S(t) = \left(\sum_{i=1}^{n-1} \frac{I_i}{\tau_i} e^{-\frac{t}{\tau_i}} + I_d \left(\sum_{N=1}^{N_{\text{max}}} \nu_N\right)^{-1} \sum_{N=1}^{N_{\text{max}}} \frac{\nu_d^N e^{-\nu_d} \nu_N}{N! \tau_N} e^{-\frac{t}{\tau_N}}\right) \otimes R(t) + B \sum_{i=1}^{n-1} I_i + I_d = 1$$

- fitovací parametry I_d a v_d
- stejný počet fitovacích parametrů jako při tradičním postupu

Výsledky pro HPT deformované kovy

- HPT-deformované kovy, p = 6 GPa, 5 HPT rotací
- měřeny ve středu vzorku

vzorek	τ ₁ (ps)	I ₁ (%)	τ ₂ (ps)	I ₂ (%)	ν_{d}	I _d (%)
Cu, fcc	-	-	164(1)	73.3(8)	3.7(2)	26.7(8)
AI, fcc	158(1)	86.5(4)	240(3)	10(1)	40(3)	3.5(4)
Fe, bcc	-	-	150.8(8)	89.8(2)	11.3(5)	10.2(3)
Nb, bcc	-	-	174(1)	91.2(3)	3.0(2)	8.8(5)
W, bcc	-	-	161.6(6)	90.5(5)	13(1)	9.5(7)
Ti, hcp	-	-	182(1)	96.3(5)	39(2)	3.7(7)

volné pozitrony

dislokace

klastry vakancí (rozdělení velikostí)

Výsledky pro HPT deformované kovy

- HPT-deformované kovy, p = 6 GPa, 5 HPT rotací
- měřeny ve středu vzorku

rozdělení velikostí P(N) klastrů vakancí

Výsledky pro HPT deformované kovy

- HPT-deformované kovy, p = 6 GPa, 5 HPT rotací
- měřeny ve středu vzorku

rozdělení velikostí P(N) klastrů vakancí

Ν

fcc Pd

$$\tau = \left(\pi r_0 c \int n_-(\mathbf{r}) n_+(\mathbf{r}) \gamma(n_-) \, d\mathbf{r}\right)^{-1}$$

doba života
$$\tau_B = 111$$
 ps

1e-5

2e-5

3e-5 4e-5

5e-5 6e-5

7e-5 8e-5

- H absorbovaný v Pd mříži
- oktaedrální poloha

- H absorbovaný v Pd mříži
- oktaedrální poloha

- H absorbovaný v Pd mříži
- oktaedrální poloha

• absorpční energie $2Pd + H_2 \rightarrow 2PdH$

energie superbuňky obsahující 108 Pd atomů + H v oktaedrální poloze

$$E_{H,abs} = 2E(Pd, H) - 2E(Pd) - E(H_2) = -0.28 \text{ eV/H}_2 = -27 \text{ kJ/mol H}_2$$

energy of superbuňky obsahujícíenergie H2 molekuly108 Pd atomů6.66 eV

• experiment: $E_{H,abs} = -27.2 \text{ kJ/mol H}_2$

D. Artman, T.B. Flanagan, Can J. Chem. 50, 1321 (1972)

Η

Pd

- Pd vakance
- oktaedrální poloha

- Pd vakance
- oktaedrální poloha

 $\tau_V = 193.5 \,\mathrm{ps}$ (nerelaxovaná 196 ps)

• formační energie vakance

energie superbuňky obsahující vakanci (tj. obsahující *N*-1 =107 Pd atomů)

$$E_{V,f} = E(Pd, vac) - \frac{N}{N-1} E(Pd) = 1.70 \text{ eV}$$

energie superbuňky obsahující
 $N = 108 \text{ Pd}$ atomů

• experiment:
$$E_{V,f} = 1.68 \,\mathrm{eV}$$

Cahn and Hansen: Physical Metallurgy, Vol. 2, North-Holland, Amsterdam (1983)

• Pd vakance s H

• Pd vakance s H

• Pd vakance s H

$$\tau_{V-H} = 178.7 \, \mathrm{ps}$$

• formační energie:

energie superbuňky obsahující vacancy associovanou s H (N-1 =107 Pd atomů + 1 H atom)

$$E_{V-H,f} = E(Pd, vac, H) - E(Pd, H) + \frac{1}{N}E(Pd) = 0.35 eV$$

energie superbuňky obsahující N = 108 Pd atomů + 1 H atom

energie perfektní superbuňky obsahující N = 108 Pd atomů

- absorbované atomy H snižují formační energii vakance $E_{V-H,f} < E_{V,f}$
- vazebná energie H k vakanci: $E_B = E_{V,f} E_{V-H,f} = 1.35 \,\text{eV}$

• experiment:
$$E_B = 1.3 - 1.4 \,\mathrm{eV}$$

Н

Pd

Si – vliv struktury

Si – vliv struktury

pozitronová a elektronová hustota ve směru [111]