- záchyt pozitronů ve vakancích
- mechanismy uvolnění vazebné energie:
- 1. tvorba páru elektron-díra

2. ionizace vakance

3. emise fononu

- záchyt pozitronů ve vakancích
- nábojový stav vakance:
- 1. záporně nabitá vakance

2. neutrální vakance

3. kladně nabitá vakance

- defekty v GaAs
- Fermiho energie $\mu = E_F E_0$ chemický potenciál e⁻

- defekty v GaAs
- Fermiho energie $\mu = E_F E_0$ chemický potenciál e⁻

- defekty v GaAs
- Fermiho energie $\mu = E_F E_0$ chemický potenciál e⁻

 $\frac{D^{q}}{D^{q+1}} \oint E_{1} \text{ ionizační energie}$

• poměr koncentrací
$$\begin{bmatrix} D^q \\ D^{q+1} \end{bmatrix} = \frac{Z(q)}{Z(q+1)} \exp\left(-\frac{E_1 - E_F}{kT}\right)$$

• Z(q) – stupeň degenerace

• koncentrace
$$\frac{[D^q]}{[D]} = \frac{1}{1 + \frac{Z(q+1)}{Z(q)} \exp\left(\frac{E_1 - E_F}{kT}\right)} = \frac{[D^{q+1}]}{[D]} = \frac{1}{1 + \frac{Z(q)}{Z(q+1)} \exp\left(-\frac{E_1 - E_F}{kT}\right)}$$

• E_F - $E_I = 4 kT$: 97 % vakancí v nábojovém stavu D^q

- defekty v GaAs
- více nábojových stavů defektu

$$\frac{\underline{D}^{q-l+1}}{\underbrace{I}} \quad E_i \text{ ionizační energie} \\
\underline{D}^{q+1} \\
\underline{D}^{q}$$

• koncentrace

$$\frac{\begin{bmatrix} D^{q-i+1} \end{bmatrix}}{\begin{bmatrix} D \end{bmatrix}} = \frac{\prod_{j=1}^{l} \begin{bmatrix} D^{q-j+1} \\ D^{q-j+2} \end{bmatrix}}{1 + \sum_{i=1}^{l} \prod_{j=1}^{i} \begin{bmatrix} D^{q-j+1} \\ D^{q-j+2} \end{bmatrix}}$$

- defekty v Si
- poloha Fermiho hladiny

• záchyt pozitronů ve vakancích

Trapping coefficient (10¹⁴ s ⁻¹)

- mechanismus uvolnění energie: tvorba páru elektron-díra
- závislost specifické záchytové rychlosti na šířce zakázaného pásu

• teplotní závislost specifické záchytové rychlosti

- záchyt pozitronů ve vakancích
- mechanismus uvolnění energie: ionizace vakance
- teplotní závislost specifické záchytové rychlosti

- záchyt pozitronů ve vakancích
- mechanismus uvolnění energie: ionizace vakance
- závislost specifické záchytové rychlosti pro V⁰ na vazebné energii elektronu

- záchyt pozitronů v Rydbergových stavech
- mechanismus uvolnění energie: emise fononu
- závislost specifické záchytové rychlosti na hlavním kvantovém čísle

záchyt pozitronů v Rydbergových stavech
mechanismus uvolnění energie: emise fononu
teplotní závislost specifické záchytové rychlosti

- záchyt pozitronů v Rydbergových stavech
- přechod mezi Rydbergovými stavy
- frekvence přechodů $n \rightarrow n$ ' mezi *s*-Rydbergovými stavy

• anihilační rychlost $\lambda_b \approx (3-5) \times 10^9 \text{ s}^{-1}$ $\downarrow \downarrow$ k přechodům mezi Rydbergovými stavy

nedochází

- záchyt pozitronů v Rydbergových stavech
- přechod mezi Rydbergovým stavem a základním stavem
- frekvence přechodů mezi *n* Rydbergovým stavem a základním stavem

• anihilační rychlost $\lambda_b \approx (3-5) \times 10^9 \text{ s}^{-1}$

• záchytový model proV

• GaAs ozářený elektrony (1.5 MeV)

střední doba života

- GaAs ozářený elektrony (1.5 MeV)
- $\tau_b = 230 \text{ ps}$
- V_{Ga}: $\tau_v = 260$ ps (hluboká záchytová centra)
- mělká záchytová centra: $\tau_s = 230$ ps
- záchyt pozitronů v Rydbergových stavech

- GaAs ozářený elektrony (1.5 MeV)
- $\tau_b = 230 \text{ ps}$
- V_{Ga}: $\tau_v = 260$ ps (hluboká záchytová centra)
- mělká záchytová centra: $\tau_s = 230 \text{ ps}$
- záchyt pozitronů v Rydbergových stavech
- záporně nabité ionty Ga_{As}
- koncentrace Ga_{As} nezávislá na koncentraci vakancí

- GaAs ozářený elektrony (1.5 MeV)
- $\tau_b = 230 \text{ ps}$
- V_{Ga} : $\tau_v = 260 \text{ ps}$ (hluboká záchytová centra)
- mělká záchytová centra: $\tau_s = 230 \text{ ps}$
- záchyt pozitronů v Rydbergových stavech
- záporně nabité ionty Ga_{As}
- $E_b = (41 \pm 4) \text{ meV}$
- koncentrace $c_{st} = 1.3 \times 10^{17} \text{ cm}^{-3}$

rozklad na komponenty INTENSITY I₂ (%) 50 GaAs A: 300 K 10¹⁷ e⁻ cm⁻² 5 × 10¹⁷ e⁻ cm⁻² 280 240 POSITRON LIFETIME (ps) 200 240 τ_{ave} 230 100 200 300 MEASUREMENT TEMPERATURE (K)

C. Corbel et al. Phys. Rev. B 45, 3386 (1992)

- GaAs ozářený elektrony (1.5 MeV)
- $\tau_b = 230$ ps, záporně nabité ionty Ga_{As}

$$\frac{\delta_{st}(T)}{K_{st}} = \frac{1}{c_{st}} \left(\frac{mkT}{2\pi\eta^2}\right)^{3/2} \exp\left(-\frac{E_B}{kT}\right)$$

$$\frac{\delta_{st}(T)}{K_{st}}(kT)^{-3/2} = \frac{1}{c_{st}}\left(\frac{m}{2\pi\eta^2}\right)^{3/2} \exp\left(-\frac{E_B}{kT}\right)$$

• Arrheniův plot

$$\frac{\delta_{st}(T)}{K_{st}}(kT)^{-3/2} \quad \text{vs} \quad \frac{1}{T}$$

- GaAs ozářený elektrony (1.5 MeV)
- $\tau_b = 230$ ps, záporně nabité ionty Ga_{As}
- koncentrace mělkých záchytových center
- $E_b = 38 41 \text{ meV}$

záchytový model

záchytový model

• vliv poměru K_v / K_R

záchytový model

• vliv vazebné energie pozitronu *E*_b

C. Corbel et al. Phys. Rev. B 45, 3386 (1992)

- GaAs ozářený elektrony (1.5 MeV)
- teplotní stabilita defektů
- mělká záchytová centra jsou teplotně stabilní
- vakance se při pokojové teplotě odžíhávají

- GaAs
- závislost τ_v na poloze Fermiho hladiny
- přechod $\tau_v = 260 \text{ ps} \rightarrow 295 \text{ ps}$
- $\tau_v = 260 \text{ ps: } V_{As}^{1-}$
- $\tau_v = 295 \text{ ps: } V_{As}^{0}$
- přechod $V_{As}^{-1} \rightarrow V_{As}^{0}$

- GaAs
- závislost záchytové rychlosti K_{295} na poloze Fermiho hladiny

• CdTe

- bulk $\tau_b = 295 \text{ ps}$
- vakance $(V_{Cd} 2Zn_{Te})^0$, $\tau_v = 320 \text{ ps}$

- *A*-centrum ($V_{Cd} Cl_{Te}$)⁻, $\tau_v = 330 \text{ ps}$
- klastr 4 *A*-center 4(V_{Cd} Cl_{Te})⁻, τ_{4V} = 420 ps
- mělká záchytová centra $\tau_R = 290 \text{ ps}$

• CdTe

sample	treatment	T (K)	τ_1 (ps)	I_1 (%)	τ_2 (ps)	I_2 (%)	τ_3 (ps)	I_3 (%)	$ au_f$
CdTe	as-grown	295	288(2)	90(1)	_	_	379(6)	10(1)	295(2)
CdTe	as-grown	123	286(2)	89(1)	_	_	375(7)	11(1)	294(2)
CdZnTe	as-grown	295	263(9)	42(1)	_	_	327(8)	58(1)	296(5)
CdZnTe	as-grown	123	260(9)	37(4)	_	_	326(8)	63(1)	297(5)
CdZnTe	Cd-annealed	295	295.0(4)	100	_	_	_	_	295.0(4)
CdZnTe	Cd-annealed	123	293.0(5)	100	_	_	_	_	293.0(5)
CdZnTe	Te-annealed	295	260(10)	40(5)	_	_	320(5)	60(10)	290(10)
CdZnTe	Te-annealed	123	253(8)	45(5)	_	_	325(5)	55(8)	288(5)
CdTe:Cl	as-grown	295	230(2)	45(1)	_	_	405(2)	55(1)	301(3)
CdTe:Cl	as-grown	123	145(9)	10(5)	290(10)	55(9)	403(9)	35(8)	291(5)
CdTe:Cl	Cd-annealed	295	294.9(8)	100	_	_	_	_	294.9(8)
CdTe:Cl	Cd-annealed	123	160(9)	11(5)	290(10)	89(5)	_	_	270(10)
CdTe:Cl	Te-annealed	295	240(10)	22(5)	_	_	316(6)	78(5)	295(2)
CdTe:Cl	Te-annealed	123	150(10)	9(4)	290(9)	81(8)	320(10)	10(4)	270(6)