- fast positrons emitted by a $\beta^{\scriptscriptstyle +}$ radioisotope
- spatial resolution $\approx 100 \ \mu m$ (positron stopping depth)
- non-destructive mapping of spatial distribution of defects

- mapping of spatial distribution of defects
- microhardness HV
- dislocations (work hardening)

HV $\approx \sqrt{\rho_D}$

- grain boundaries (Hall-Petch) HV $\approx 1/\sqrt{d}$
- torsion straining

$$e = \ln \left(\frac{\Im r}{l} \right)$$

- *e* von Misses equiv. strain
- $\mathcal {\mathcal {G}}$ rotation angle
- *r* radial distance
- *l* sample thickness

Ultra fine grained Cu HPT (p = 6 GPa)

- mapping of spatial distribution of defects
- measurement of Doppler broadening
- S-parameter mapping
- dislocations
- grain boundaries
- deformation-induced vacancies

Ultra fine grained Cu HPT (p = 6 GPa)

3 HPT revolutions

15 HPT revolutions

25 HPT revolutions

• torsion straining

$$e = \ln(\Re / l)$$

- *e* von Misses equiv. strain
- $\mathcal {\mathcal {G}}$ rotation angle
- *r* radial distance
- *l* sample thickness

- slow positrons moderated in a slow positron beam
- the mean implantation depth of $E \approx 1$ keV positrons is $z_{mean} \approx 10$ nm
- spatial resolution is limited by positron diffusion length $L_+ \approx 100 \text{ nm}$
- mapping of lateral distribution of defects + depth profile of defects
- non-destructive 3D mapping of defect distribution

• brightness of positron beam

$$B = \frac{I}{\Omega_x \, \Omega_y}$$

- I-intensity
- Liouvill theorem

$$\Delta x \, \Delta p_x = \Omega_x = \text{konst}$$
$$\Delta y \, \Delta p_y = \Omega_y = \text{konst}$$

• brightness of commercially available e^+ sources is $10^{-19} - 10^{-16}$ the brightness of typical e^- sources!

Kögel, EPOS meeting 2002

remoderation

$$B = \frac{I}{\Omega_x \, \Omega_y}$$

I-intensity

- brightness enhancement
- i.e. reduction of beam volume in the phase space
- inevitable reduction of intensity

remoderation

- electrostatic remoderator
- reduction of beam spot size $\approx 10 \times$
- remoderator with magnetic lens
- \bullet magnetic separation of primary beam and remoderated e^+
- reduction of beam spot size $\approx 100 \times$

Kögel, EPOS meeting 2002

remoderation

- electrostatic remoderator
- reduction of beam spot size $\approx 10 \times$
- remoderator with magnetic lens
- \bullet magnetic separation of primary beam and remoderated e^+
- reduction of beam spot size $\approx 100 \times$

Kögel, EPOS meeting 2002

- scanning positron microscope
- TU Munich
- focused pulsed slow e⁺ beam

• spot size of focused beam $\approx 2~\mu m$

$$r_{opt} = \sqrt{\frac{f^2 \Delta E}{E} + \frac{C_s^2 R^6}{16 f^6}}$$

- ΔE dispersion of transversal e⁺ energy
- $\bullet f$ focused length of electrostatic lens
- C_S spherical aberation
- *R* beam radius

Kögel et al. Appl. Surf. Sci. 116, 108 (1997)

scanning positron microscope

- scanning positron microscope
- TU Munich
- \bullet focused pulsed slow e^+ beam
- time resolution $\approx 250 \text{ ps}$

Kögel et al. Appl. Surf. Sci. 116, 108 (1997)

Positron mikroskope

- scanning positron microscope
- TU Munich
- spatial resolution $\approx 2~\mu m$
- Si substrate with etched pattern

David et al. Phys. Rev. Lett. 87, 067402 (2001)

- scanning positron microscope
- TU Munich
- spatial resolution $\approx 2 \ \mu m$
- Cu fatigue
- mapping using mean positron lifetime

• E = 16 keV

Egger et al. Appl. Surf. Sci. 194, 214 (2002)

- scanning positron microscope
- TU Munich
- spatial resolution $\approx 2 \ \mu m$
- Cu fatigue
- linear scan perpendicular to crack
- E = 16 keV
- two-component decomposition, τ_2 fixed at 400 ps

Egger et al. Appl. Surf. Sci. 194, 214 (2002)

- transmission positron microscope
- KEK Tsukuba
- positron source: LINAC

Matsua et al. Nucl. Insr. Meth. A 645, 102 (2011)

• transmission positron microscope

- KEK Tsukuba
- positron source: LINAC

remoderator (brightness enhancer)

- transmission positron microscope
- KEK Tsukuba
- positron source: LINAC

- transmission positron microscope
- 10 nm Au (100) foil on a supporting Cu mesh **positrons**

• transmission positron microscope

• 10 nm Au (100) foil on a supporting Cu mesh - diffraction **positrons**

electrons

- transmission positron microscope
- 35 nm Al foil on a supporting Cu mesh transmittance

pozitrony

elektrony

Matsua et al. Nucl. Insr. Meth. A 645, 102 (2011)