Schrödinger equation:

$$\left[\frac{\hat{\mathbf{p}}^2}{2m} + V(\mathbf{x},t)\right]\psi(\mathbf{x},t) = i\hbar \frac{\partial\psi(\mathbf{x},t)}{\partial t}$$

non-relativistic equation of motion for electron



Erwin Schrödinger 1933 Nobel prize

Dirac equation: 
$$(\alpha \hat{\mathbf{p}} c + \beta mc^2)\psi(\mathbf{x}, t) = i\hbar \frac{\partial \psi(\mathbf{x}, t)}{\partial t}$$

- relativistic equation of motion for electron
- solutions with positive energy: 'normal electrons'



Paul Adrien Maurice Dirac 1933 Nobel prize

P.A.M. Dirac, Proc. R. Soc. Lond. A 117, 610-624 (1928)

Dirac equation: 
$$(\alpha \hat{\mathbf{p}} c + \beta mc^2)\psi(\mathbf{x}, t) = i\hbar \frac{\partial \psi(\mathbf{x}, t)}{\partial t}$$

- relativistic equation of motion for electron
- solutions with positive energy: 'normal electrons'
- solutions with negative energy

• energy of a free particle 
$$E = \frac{1}{2}mv^2 = \frac{p^2}{2m}$$
 (classical)



Paul Adrien Maurice Dirac 1933 Nobel prize

P.A.M. Dirac, Proc. R. Soc. Lond. A 117, 610-624 (1928)

Dirac equation: 
$$(\alpha \hat{\mathbf{p}} c + \beta mc^2)\psi(\mathbf{x}, t) = i\hbar \frac{\partial \psi(\mathbf{x}, t)}{\partial t}$$

- relativistic equation of motion for electron
- solutions with positive energy: 'normal electrons'
- solutions with negative energy
- relativistic energy

$$E^2 = m^2 c^4 + p^2 c^2$$

$$E = \pm \sqrt{m^2 c^4 + p^2 c^2}$$



Paul Adrien Maurice Dirac 1933 Nobel prize

P.A.M. Dirac, Proc. R. Soc. Lond. A 117, 610-624 (1928)

Dirac equation: 
$$(\alpha \hat{\mathbf{p}} c + \beta mc^2)\psi(\mathbf{x},t) = i\hbar \frac{\partial \psi(\mathbf{x},t)}{\partial t}$$

- relativistic equation of motion for electron
- solutions with positive energy: 'normal electrons'
- vacuum is a see of electrons with negative energy





Paul Adrien Maurice Dirac 1933 Nobel prize

P.A.M. Dirac, Proc. R. Soc. Lond. A 117, 610-624 (1928)

Dirac equation: 
$$(\alpha \hat{\mathbf{p}} c + \beta mc^2)\psi(\mathbf{x}, t) = i\hbar \frac{\partial \psi(\mathbf{x}, t)}{\partial t}$$

- relativistic equation of motion for electron
- solutions with positive energy: 'normal electrons'
- vacuum is a see of electrons with negative energy
- positron is a "hole" in vacuum





Paul Adrien Maurice Dirac 1933 Nobel prize

P.A.M. Dirac, Proc. R. Soc. Lond. A 117, 610-624 (1928)

Dirac equation: 
$$(\alpha \hat{\mathbf{p}} c + \beta mc^2)\psi(\mathbf{x}, t) = i\hbar \frac{\partial \psi(\mathbf{x}, t)}{\partial t}$$

- relativistic equation of motion for electron
- solutions with positive energy: 'normal electrons'
- vacuum is a see of electrons with negative energy
- positron is a "hole" in vacuum





Paul Adrien Maurice Dirac 1933 Nobel prize

P.A.M. Dirac, Proc. R. Soc. Lond. A 117, 610-624 (1928)

## **Discovery of positron**

discovery of positron 1932  $\vec{F} = e \vec{v} \times \vec{B}$ 



6 mm Pb foil



Carl David Anderson 1936 Nobel prize

#### The Positive Electron

CARL D. ANDERSON, California Institute of Technology, Pasadena, California (Received February 28, 1933)

Out of a group of 1300 photographs of cosmic-ray tracks in a vertical Wilson chamber 15 tracks were of positive particles which could not have a mass as great as that of the proton. From an examination of the energy-loss and ionization produced it is concluded that the charge is less than twice, and is probably exactly equal to, that of the proton. If these particles carry unit positive charge the curvatures and ionizations produced require the mass to be less than twenty times the electron mass. These particles will be called positrons. Because they occur in groups associated with other tracks it is concluded that they must be secondary particles ejected from atomic nuclei.

Editor

O<sup>N</sup> August 2, 1932, during the course of photographing cosmic-ray tracks produced in a vertical Wilson chamber (magnetic field of 15,000 gauss) designed in the summer of 1930 by Professor R. A. Millikan and the writer, the tracks shown in Fig. 1 were obtained, which seemed to be interpretable only on the basis of the existence in this case of a particle carrying a positive charge but having a mass of the same order of magnitude as that normally possessed by a free negative electron. Later study of the electrons happened to produce two tracks so placed as to give the impression of a single particle shooting through the lead plate. This assumption was dismissed on a probability basis, since a sharp track of this order of curvature under the experimental conditions prevailing occurred in the chamber only once in some 500 exposures, and since there was practically no chance at all that two such tracks should line up in this way. We also discarded as completely untenable the assumption of an electron of 20

## **Discovery of positron**

discovery of positron 1932

• B = 1.7 T• P = 425 kW



## Positron



### positron = antiparticle of electron

- rest mass: m<sub>e</sub>
- charge: +e
- spin: 1/2

### **Cosmic rays**

90 % protons

9 %  $\alpha$ -particles

1 % heavier nuclei & other particles ( $e^{-}$ ,  $e^{+}$ ,  $p^{-}$ )

interaction with atmosphere





### **Cosmic rays**

90 % protons

9 %  $\alpha$ -particles

1 % heavier nuclei & other particles ( $e^{-}$ ,  $e^{+}$ ,  $p^{-}$ )

interaction with atmosphere





## **Cosmic rays**

90 % protons

9 %  $\alpha$ -particles

1 % heavier nuclei & other particles (e<sup>-</sup>, e<sup>+</sup>, p<sup>-</sup>)

interaction with atmosphere





### **Cosmic rays**

90 % protons

9 %  $\alpha$ -particles

1 % heavier nuclei & other particles (e<sup>-</sup>, e<sup>+</sup>, p<sup>-</sup>)





## **Cosmic rays**

90 % protons

9 %  $\alpha$ -particles

1 % heavier nuclei & other particles (e<sup>-</sup>, e<sup>+</sup>, p<sup>-</sup>)





## **Cosmic rays**

90 % protons

9 %  $\alpha$ -particles

1 % heavier nuclei & other particles (e<sup>-</sup>, e<sup>+</sup>, p<sup>-</sup>)





β-decay  $\beta^{-}$  decay:  ${}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}X' + e^{-} + \overline{\nu}_{e}$  $n \rightarrow p^+ + e^- + \overline{V}_e$  $^{137}_{55}$ Cs $\rightarrow ^{137}_{56}$ Ba +  $e^-$  +  $\overline{\nu}_{e}$  $\beta^+$  decay:  ${}^{A}_{Z}X \rightarrow {}^{A}_{Z-1}X' + e^+ + \nu_{e}$  $p^+ \rightarrow n + e^+ + V_a$  $^{22}_{11}$ Na $\rightarrow^{22}_{10}$ Ne $+e^++v_e$ 



β - decay  $\beta^{-}$  decay:  ${}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}X' + e^{-} + \overline{\nu}_{e}$  $n \rightarrow p^+ + e^- + \overline{v}_a$  $^{137}_{55}$ Cs $\rightarrow ^{137}_{56}$ Ba +  $e^-$  +  $\overline{\nu}_e$  $\beta^+$  decay:  ${}^{A}_{Z}X \rightarrow {}^{A}_{Z-1}X' + e^+ + V_e$  $p^+ \rightarrow n + e^+ + V_a$  $^{22}_{11}$ Na $\rightarrow^{22}_{10}$ Ne $+e^++v_e$ 



## Interaction of e<sup>+</sup> with solid



### **Positron lifetime**

N(t) - probability that e<sup>+</sup> is alive at time t:  $\frac{dN(t)}{dt} = -\lambda N(t)$  N(0) = 1

positron annihilation rate:

$$\lambda = \pi r_0 c \int n_+(\mathbf{r}) n_-(\mathbf{r}) \gamma d\mathbf{r}$$

$$N(t) = e^{-\lambda t}$$

positron lifetime spectrum:

$$-\frac{\mathrm{d}N(t)}{\mathrm{d}t} = \lambda e^{-\lambda t}$$

mean time of positron life:

$$\int_{0}^{\infty} t \frac{\mathrm{d}N(t)}{\mathrm{d}t} \mathrm{d}t = \int_{0}^{\infty} \lambda t e^{-\lambda t} \mathrm{d}t = \left[-t e^{-\lambda t}\right]_{0}^{\infty} + \int_{0}^{\infty} e^{-\lambda t} \mathrm{d}t = \left[-\frac{1}{\lambda} e^{-\lambda t}\right]_{0}^{\infty} = \frac{1}{\lambda}$$

free positron lifetime:  $\tau = \frac{1}{\lambda}$ 

### **Positron lifetime spectrum**

positron lifetime spectrum:  $S_{id} = -\frac{dN(t)}{t} = \lambda e^{-\lambda t}$ 



### **Positron lifetime spectrum**

positron lifetime spectrum:

$$S_{id} = -\frac{dN(t)}{t} = \lambda e^{-\lambda t}$$







### **Positron lifetime spectrum**



decomposition of PL spectrum:

lifetimes  $\tau_i \rightarrow$  type of defects present

intensities  $I_i \rightarrow$  defect densities

## Simple positron trapping model: Cu with vacancies



## Positronium

- hydrogen-like bound state of positron and electron
- parapositronium p-Ps  ${}^{1}S_{0}$ , singlet state, antiparallel spins, lifetime  $\tau_{p-Ps} = 125$  ps, 2- $\gamma$
- orthopositronium o-Ps  ${}^{3}S_{1}$ , triplet state, parallel spins, lifetime  $\tau_{o-Ps} = 142$  ns, 3- $\gamma$
- formed in large open volumes: e.g. in polymers







#### Detector

BaF<sub>2</sub> scintillator

Fast component:  $\lambda_1 = 220$  nm,  $\tau_1 = 0.6$  ns

Slow component:  $\lambda_2 = 310$  nm,  $\tau_2 = 630$  ns







detectors

- fast-fast PL spectrometer
- timing resolution 160 ps (FWHM <sup>22</sup>Na)
- coincidence count rate 100 s<sup>-1</sup>
- 10<sup>7</sup> counts in spectrum

F. Bečvář et al., Nucl. Instr. Meth. A 443, 557 (2000)





source-sample sandwich

## Hydrogen in Niobium

Nb: bcc structure a = 3.3033(1) Å [PDF-2] H in Nb – interstitial solid solution





 $x_H = N_H/M - number$  of hydrogen atoms per metal atoms

## Hydrogen in Niobium



Single phase solid solution ( $\alpha$ -phase), be H fills tetrahedral interstitial positions

## Hydrogen in Niobium



 $x_H = 0 - 0.06$  (atom ratio H/Nb): single phase solid solution ( $\alpha$ -phase), bcc H fills tetrahedral interstitial positions

### **Samples**

#### defect-free Nb

- bulk Nb (99.9%)
- annealing 1000 °C / 1h to anneal out all existing defects

#### electron irradiated Nb

- bulk Nb (99.9%)
- annealing 1000 °C / 1h to anneal out all existing defects
- 10 MeV electron irradiation, F = 2  $\times$  10^{21} m^{-2}, T\_{irr} \leq 100°C

#### all samples:

Pd cap (thickness 30 nm) → prevent oxidation

→ facilitate H absorption

R. Kircheim et al., Acta Metall. 30, 1059 (1982)

## Hydrogen loading



### H-induced lattice expansion: X-ray diffraction



relative lattice expansion:

$$\frac{a-a_0}{a_0} = \xi x_{\rm H}$$

 $a_0$  – lattice constant for virgin sample

a - lattice constant for hydrogen-loaded sample

for Nb :  $\xi = 0.058$ 

H. Peisl, in:. Hydrogen in Metals I, Springer-Verlag, Berlin (1978), p. 53



#### well annealed Nb (1000°C / 1h):

- single component PL spectrum  $\tau_1 = (128.3 \pm 0.4) \text{ ps}$
- calculated bulk Nb lifetime (ATSUP):  $\tau_B = (126 \pm 1) \text{ ps}$
- "defect-free" material

#### TEM

no dislocations observed, grain size > 10  $\mu m$ 



#### well annealed Nb (1000°C / 1h) - hydrogen loading

- hydrogen induced defects  $\tau_2~$  = (150  $\pm~0.5)~ps$
- hydrogen-induced volume expansion  $\rightarrow$  elastic process  $\rightarrow$  dislocations
- calculated lifetime for Nb vacancy (ATSUP):  $\tau_V$  = (222 ± 1) ps
- vacancies surrounded by hydrogen  $\rightarrow$  shortening of positron lifetime



Effective medium theory J. Nørskov, Phys. Rev. B 26, 2875 (1982)  $\Delta E^{hom}(\mathbf{r})$  in (001) plane vacancy in 1,1,0



H positions: [0.64,1,0], [1,0.64,0], [1,1,0.36] [1.36,1,0], [1,1.36,0], [1,1,-0.36]

Effective medium theory Stott, Zaremba, Nørskov, Lang 1980



H positions: [0.64,1,0], [1,0.64,0], [1,1,0.36] [1.36,1,0], [1,1.36,0], [1,1,-0.36]

## ATSUP calculations – Nb vacancy in [1,1,0] and H in [0.64,1,0]



positron lifetime  $\tau_{v-H} = 204(1)$  ps

#### **ATSUP** calculations – complexes (vacancy – H)



#### **ATSUP** calculations – complexes (vacancy – H)



### ATSUP calculations – complexes (vacancy – H)



 $\tau = 127(1) \text{ ps}$ 



calculated positron lifetime for vacancy is surrounded by several H atoms

Hydrogen loading  $\rightarrow$  creation of vacancies surrounded for 4 hydrogen atoms

#### well annealed Nb (1000°C / 1h) - hydrogen loading

- hydrogen induced defects  $\tau_2 = (150 \pm 0.5)$  ps
- hydrogen-induced volume expansion  $\rightarrow$  elastic process  $\rightarrow$  dislocations
- calculated lifetime for Nb vacancy (ATSUP):  $\tau_V$  = (222 ± 1) ps
- vacancies surrounded by hydrogen  $\rightarrow$  shortening of positron lifetime



 $c_v \approx 3 \times 10^{-3}$  at.%  $\Leftrightarrow T \approx 1850^{\circ}C$  (0.8 Tm)

#### H-induced defects – bulk Nb – mechanism of formation

• effective medium theory:  $E_b^{H-v} = 0.50 \text{ eV}$ 

• vacancy formation energy:  $E_f = 2.32 \text{ eV}$ 

• vacancy – 4H: 
$$E_f - 4E_b^{H-v} = 0.32 \text{ eV}$$

P. Korzhavyi et al. PRB 59, 11693 (1999)

equilibrium concentration of  
vacancy – 4H complexes:  
$$c \approx p e^{S_k/k} e^{-(E_f - 4E_b^{H-v})/kT}$$
  
• 4 H in nearest neighbor  
positions required  
 $p \sim c_H^4 \rightarrow c \approx 7 \times 10^{-9}$  at.%

• 4 H in active volume  $V_0$  $V_0 = 2.9 \text{ nm}^3 \iff 80$  unit cells of Nb

J. Čížek et al. PRB 69, 224106 (2004)





## **Electron irradiated bulk Nb**

sample 1

- bare Nb electron irradiated (10 MeV e<sup>-</sup>, F =  $2 \times 10^{21}$  m<sup>-2</sup>, T<sub>irr</sub>  $\leq 100^{\circ}$ C)
- Pd cap sputtered after irradiation

sample 2

• Nb with Pd cap electron irradiated (10 MeV e<sup>-</sup>, F = 2 × 10<sup>21</sup> m<sup>-2</sup>,  $T_{irr} \le 100^{\circ}C$ )

| τ <sub>1</sub> (ps) | l <sub>1</sub> (%)                          | τ <sub>2</sub> (ps)                                                                                                                   | l <sub>2</sub> (%)                                                                                                                                                                                          |
|---------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 47 ± 6              | 15 ± 1                                      | $190.6\pm0.5$                                                                                                                         | 85 ± 1                                                                                                                                                                                                      |
|                     |                                             |                                                                                                                                       |                                                                                                                                                                                                             |
| 47 ± 9              | 15 ± 2                                      | $190.0\pm0.8$                                                                                                                         | 85 ± 2                                                                                                                                                                                                      |
|                     |                                             |                                                                                                                                       |                                                                                                                                                                                                             |
| 57 ± 7              | 17.0 ± 0.8                                  | $185.8\pm0.8$                                                                                                                         | 83.0 ± 0.8                                                                                                                                                                                                  |
|                     | $\tau_1 (ps)$<br>47 ± 6<br>47 ± 9<br>57 ± 7 | $\begin{array}{ll} \tau_{1}  (ps) & I_{1}  (\%) \\ 47 \pm 6 & 15 \pm 1 \\ 47 \pm 9 & 15 \pm 2 \\ 57 \pm 7 & 17.0 \pm 0.8 \end{array}$ | $ \begin{array}{ll} \tau_{1}  (ps) & I_{1}  (\%) & \tau_{2}  (ps) \\ 47 \pm 6 & 15 \pm 1 & 190.6 \pm 0.5 \\ 47 \pm 9 & 15 \pm 2 & 190.0 \pm 0.8 \\ 57 \pm 7 & 17.0 \pm 0.8 & 185.8 \pm 0.8 \\ \end{array} $ |

vacancy-H complexes

• mixture of v-H ( $\tau_{v-H}$  = 204 ps) and v-2H ( $\tau_{v-2H}$  = 182 ps) complexes

## **Electron irradiated bulk Nb**

### 3-component fit

| Sample                             | τ <sub>1</sub> (ps) | I <sub>1</sub> (%) | τ <sub>2</sub> (ps) | l <sub>2</sub> (%) | τ <sub>3</sub> (ps) | I <sub>3</sub> (%) |
|------------------------------------|---------------------|--------------------|---------------------|--------------------|---------------------|--------------------|
| bare Nb                            | 43 ± 8              | $14\pm2$           | 182 Fix             | 61 ± 2             | 204 Fix             | $25\pm3$           |
| electron irradiated                |                     |                    |                     |                    |                     |                    |
| + Pd cap                           | 44 ± 9              | 14 ± 2             | 182 Fix             | 57 ± 2             | 204 Fix             | 29 ± 4             |
| Nb electron irradiated with Pd cap | 48 ± 5              | 15 ± 2             | 182 Fix             | 74 ± 1             | 204 Fix             | 11 ± 3             |

v-2H complexes v-H complexes

### **Electron irradiated bulk Nb**

0



application of 3-state trapping model

### **Doppler Broadening**











#### **CDB** ratio curves

element sensitivity

#### **Chemical environment of defects** → CDB measurements

- two HPGe detectors
- energy resolution 1.05 keV (FWHM, E = 512 keV)
- coincidence count rate 550 s<sup>-1</sup>
- 10<sup>8</sup> counts in spectrum
- J. Čížek et al., Mat. Sci. Forum. 445-446, 63 (2004)



## Vacancy-H complexes – calculated HMP's



## **Electron irradiated Nb – experimental high momentum profiles**

bare Nb irradiated



## **Electron irradiated Nb – experimental high momentum profiles**



## **Electron irradiated Nb – experimental high momentum profiles**



## **Other gas impurities – calculated HMP's**



## Další informace o anihilaci pozitronů

přednáška anihilace pozitronů v pevných látkách NFPL 103

https://physics.mff.cuni.cz/kfnt/vyuka/anihilace/index.html

# Anihilace pozitronů v pevných látkách

NFPL103, ZS 2020

Jakub Čížek

V zimním semestru 2020 probíhá přednáška distanční formou

Studijní literatura:

- P. Hautojärvi: <u>Positrons in Solids</u>
- M.J. Puska, R.M. Nieminen: <u>Theory of positrons in solids and on solid surfaces</u> Rev. Mod. Phys. 66 (1994) 841-897
- P.J. Schultz, K.G. Lynn: <u>Interaction of positron beams with surfaces, thin films</u>, and interfaces Rev. Mod. Phys. 60 (1988) 701-779
- 1. přednáška, základní charakteristiky pozitronu, zdroje pozitronů
  - prezentace
  - videozáznam přednášky
  - videozáznam on-line diskuze
- 2. přednáška, dozimetrické jednotky, interakce pozitronů s pevnou látkou
  - prezentace
  - videozáznam přednášky
  - videozáznam on-line diskuze
- 3. přednáška, termalizace pozitronu, anihilace pozitronu, pozorovatelné
  - prezentace
  - videozáznam přednášky

## Další informace o anihilaci pozitronů

Den s experimentální fyzikou 2020

https://www.youtube.com/watch?v=\_Jp-\_eg1uAs

(nejdřív přednáška o atmosféře, pak nanomateriály, experiment COMPASS a potom anihilace pozitronů)