koherentní precipitát

• výstupní práce: $\Phi_{-} = \Delta - \mu_{-}$ $\Phi_{+} = -\Delta - \mu_{+}$

- povrchový potenciál: Δ
- chemický potenciál: μ_{-}, μ_{+}

koherentní precipitát

dva materiály A a B v kontaktu elektrony pozitrony EΑ В Α В $\mu_{-,B}$ 0 $\mu_{-,A}$ E_{F} $\mu_{+,A}$ $E_{+,0,A}$ $\mu_{\scriptscriptstyle +,B} \ E_{\scriptscriptstyle +,0,B}$ valenční pás

• rozdíl energií základního stavu e^+

$$\Delta E_{+,A,B} = \mu_{-,A} - \mu_{-,B} + \mu_{+,A} - \mu_{+,B}$$

• afinita pozitronu: $A_{+} = \mu_{-} + \mu_{+}$

$$\Delta E_{\scriptscriptstyle +,A,B} = A_{\scriptscriptstyle +,A} - A_{\scriptscriptstyle +,B}$$

koherentní precipitát

dva materiály A a B v kontaktu elektrony pozitrony EΑ В Α В $\mu_{-,B}$ 0 $\mu_{-,A}$ E_F $\mu_{+,A}$ $E_{+,0,A}$ $\mu_{+,B}$ valenční pás $E_{+,0,B}$

• minimální poloměr precipitátu

$$r_c [\text{nm}] = 0.31 / \sqrt{\Delta A [\text{eV}]}$$

koherentní precipitát s defekty

 $arphi_{\!\!+}$

nekoherentní precipitát

Koincidenční měření Dopplerovského rozšíření (CDB)

Koincidenční měření Dopplerovského rozšíření (CDB)

 $E_1 - E_2 = 2\Delta E = c \, p_L$

DigitálníCDB spektrometr

------FINPUT 2 - 1 560 MP-17 FRIGGER IN

• modelová funkce(jednoduchý případ "čistého pulsu")

$$f(t) = f_{main}(t - t_0) + bcg$$

• hlavní puls

$$f_{main}(t) = \left[\frac{1}{\beta_2 \sqrt{2\pi}} \exp\left(-\frac{t^2}{2\beta_2^2}\right)\right] * \left[\beta_0 H_s(t-t_0) \exp\left(-\beta_1(t-t_0)\right)\right]$$

- parametery
- β_0 amplituda pulsu (přímo úměrná energii detekovaného γ -záření)
- t_0 poloha pulsu
- $oldsymbol{eta}_1$ rozpadová konstanta pulsu
- $\beta_2\,$ standardní odchylka Gaussiánu, který započítává vliv konečného energetického rozlišení HPGe detektoru

puls bez pile-upu

• modelová funkce (obecnější případ – puls s pile-upem)

$$f(t) = f_{main}(t - t_0) + f_{pile-up}(t - t_1) + f_{prec}(t) + bcg$$

konstantni pozadí
hlavní puls pile-up (naložený puls) exponenciálně
klesající pozadí kvůli
předcházejícímu pulsu

• pile-up (naložený puls)

$$f_{pile-up}(t) = \left[\frac{1}{\beta_2 \sqrt{2\pi}} \exp\left(-\frac{t^2}{2\beta_2^2}\right)\right] * \left[\beta_3 H_s(t-t_1) \exp\left(-\beta_1(t-t_1)\right)\right]$$

- další parametry (popisující naložený puls)
- β_3 amplituda naloženého pulsu
 - t_1 poloha naloženého pulsu

• modelová funkce (obecnější případ – puls s pile-upem)

$$f(t) = f_{main}(t - t_0) + f_{pile-up}(t - t_1) + f_{prec}(t) + bcg$$

konstantni pozadí
hlavní puls pile-up (naložený puls) exponenciálně
klesající pozadí kvůli
předcházejícímu pulsu

exponenciálně klesající pozadí

$$f_{prec}(t) = \beta_4 \exp(-\beta_1 t)$$

- další parametr (popisující exponenciálně klesající pozadí)
- eta_4 amplituda předchozího pulsu

pulse s pile-upem

Digitální CDB spektrometr

- dva HPGe detektory
- energetické rozlišení:
 1.05 keV (FWHM, *E* = 511 keV)
- četnost koincidencí 550 s⁻¹
- 10⁸ událostí ve spektru

CDB spektrum

30

20 ·

10 -

vzorek det 1 det 2 Fe 99.999% 1e+0 1e+1 1e+2 1e+3 1e+4 1e+5

CDB spektrum

CDB spektrum

CDB spektra

• 2D CDB energetická spektra: $E_1 + E_2$ vs. $E_1 - E_2$

CDB spektra – 1D řezy

CDB spektra – Dopplerovsky rozšířený profil

normalizované Dopplerovsky rozšířené anihilační profily

CDB spektra – Dopplerovsky rozšířený profil

• Al (99.9999 %)

core elektrony: 1s² 2s² 2p⁶ valenční elektrony: 3s² 3p¹

- normalizovaný Dopplerovsky rozšířený profil
- ab-inito teoretické výpočty rozdělení hybností (GGA schéma)

CDB spektra – Dopplerovsky rozšířený profil

• Fe (99.99 %)

core elektrony: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁶ valenční elektrony: 4s²

- normalizovaný Dopplerovsky rozšířený profil
- ab-inito teoretické výpočty rozdělení hybností (GGA schéma)

CDB spektra – podílové křivky

Ocel tlakové nádoby reaktoru

- Cr-Mo-V ocel (15Kh2MFA)
- VVER 400 vodou chlazený reaktor

Chemické složení (wt.%)

Cr	Мо	V	Mn	Si	С	Ni	Cu	S	Ρ
2.90	0.66	0.31	0.46	0.17	0.16	0.07	0.07	0.02	0.01

- Ocel byla ozářená neutrony v jaderné elektrárně po dobu 1 10 let
- podmínky ozáření:
 - VVER-440 reaktor
 - $T \approx 275 \text{ °C}$
 - tok (E > 0.5 MeV): $\phi \approx (1-5) \times 10^{16}$ m⁻² s⁻¹
 - fluence: $F \approx (1-10) \times 10^{24} \text{ m}^{-2}$

Mikrostruktura

• 15Kh2MFA Cr-Mo-V ocel, neozářený materiál

$$\tau_1 = 64(5) \text{ ps}, I_1 = 14.1(7) \%$$

$$\tau_2 = 151.6(8) \text{ ps}, \text{ I}_2 = 85.9(6) \%$$

dislokace

• hustota dislokací $\rho_{\text{D}} = (2.3 \pm 0.4) \times 10^{14} \text{ m}^{-2}$

Radiační zkřehnutí

Charpyho V-test

Cr-Mo-V ocel

Radiační zkřehnutí

Įκ DETAIL A 55 Charpyho V-test VRUB 9 Cr-Mo-V ocel U VRUB 40 300 200-900 non irradiated 250 BASE ပ္စ TEMPERATURE, 2 years irradiated 800 YIELD STRENGTH, 150 200 3 years irradiated 5 years irradiated 700 KCV (J cm²) 10 years irradiated 100-150 600 **TRANSITION** MPa 50-100 500 400 50 0 4 6 8 FLUENCE, x 10^{2 4} m^{- 2} 10 2 0 0 -100 100 -200 0 200 300 400 500

Temperature (°C)

Radiačně indukované defekty

 15Kh2MFA Cr-Mo-V ocel, ozářený materiál TEM

10 let

Fluence (E > 0.5 MeV):

- Radiačně-indukované precipitáty
- struktura a chemické složení??

Radiačně indukované defekty - PAS

• 15Kh2MFA Cr-Mo-V ocel, ozářený materiál

radiačně-indukované klastry vakancí

Radiačně indukované defekty - PAS

• 15Kh2MFA Cr-Mo-V ocel, ozářený materiál

vypočítaná závislost doby života e⁺ na velikosti klastru vakancí pro Fe

• radiačně-indukované klastry vakancí – velikost \approx 4 vakance ($d \approx 0.5$ nm)

Radiačně indukované defekty - PAS

• 15Kh2MFA Cr-Mo-V ocel, ozářený materiál

[•] radiačně-indukované klastry vakancí

Radiačně indukované defekty - CDB

• 15Kh2MFA Cr-Mo-V ocel, ozářený materiál

2.2 2.0 ratio to non-irradiated 1.8 čistá Cu 1.6 1.4 1.2 1.0 0.8 5 10 15 20 25 30 35 40 0 $p_{L} (10^{-3} m_{0}c)$

podílová křivka vzhledem k neozářené oceli

Radiačně indukované defekty - CDB

• 15Kh2MFA Cr-Mo-V ocel, ozářený materiál

podílová křivka vzhledem k neozářené oceli

ozáření neutrony → nárůst concentrace Cu v okolí defektů
 radiačně-indukované precipitáty

Radiačně indukované defekty - CDB

• 15Kh2MFA Cr-Mo-V ocel, ozářený materiál

2.2 2.0 ratio to non-irradiated 1.8 čistá Cu 1.6 1.4 Cr-Mo-V ocel 1.2 ozářená 5 let Cr-Mo-V ocel 1.0 ozářená 5 years a vyžíhaná 475°C/165h 0.8 10 15 20 25 30 35 5 40 0 $p_{L} (10^{-3} m_{0}c)$

podílová křivka vzhledem k neozářené oceli

• regenerační žíhání → pokles koncentrace Cu v okolí defektů – rozpuštění Cu precipitátů

Radiačně indukované defekty - TEM

• 15Kh2MFA Cr-Mo-V ocel, ozářený materiál

Ocel ozářená 5 let Fluence (E>0.5 MeV): 4.78×10²⁴ m⁻²

po vyžíhání 475°C / 165h

• regenerační žíhání na 475°C → rozpuštění radiačně-indukovaných precipitátů

Vliv regeneračního žíhání na mechanické vlastnosti

• 15Kh2MFA Cr-Mo-V ocel, ozářený materiál

rozpuštění radiačně-indukovaných precipitátů
 → zotavení mechanických vlastností

3D atom probe

• 15Kh2MFA Cr-Mo-V ocel, ozářený materiál

ozáření neutrony 10 let Fluence (E > 0.5MeV): 9.96×10^{24} m⁻² T_{irr} = 270°C

M.K. Miller, et al. J. Nucl. Mater. Vol. 282 (2000), p. 83.

- 15Kh2MFA Cr-Mo-V ocel, materiál ozářený 3 roky
- frakce pozitronů, které anihilovaly s Cu elektrony

• 15Kh2MFA Cr-Mo-V ocel, materiál ozářený 3 roky

CDB podíl: ozářený/neozářený

