Záchyt pozitronu v defektech

$$\tau = \left(\pi r_0 c \int n_-(\mathbf{r}) n_+(\mathbf{r}) \gamma(n_-) \, d\mathbf{r}\right)^{-1}$$

doba života $\tau_{\rm B} = 125 \ {\rm ps}$

2.0e-5 4.0e-5 6.0e-5

8.0e-5 1.0e-4 1.2e-4 1.4e-4 Záchyt pozitronu v defektech

$$\tau = \left(\pi r_0 c \int n_-(\mathbf{r}) n_+(\mathbf{r}) \gamma(n_-) \, d\mathbf{r}\right)^{-1}$$

doba života $\tau_{\rm B} = 125 \ {\rm ps}$

Záchyt pozitronu v defektech

$$\left(\pi r_0 c \int n_-(\mathbf{r}) n_+(\mathbf{r}) \gamma(n_-) d\mathbf{r}\right)^{-1} \quad \text{voln} \circ \mathbf{e}^+ \tau_B = 1$$

5.0e-4 1.0e-3 1.5e-3 2.0e-3

2.5e-3 3.0e-3 3.5e-3

vakance $\tau_{\rm V} = 222 \text{ ps}$

 $\tau =$

3.0 2.5

Záchyt v klastrech vakancí

Záchyt v klastrech vakancí

Záchyt v klastrech vakancí

Specifická záchytová rychlost pro klastry vakancí

- specifická záchytová rychlost narůstá s rostoucí velikostí klastru
- malé klastry ($N \le 10$): $v_N \sim N$
- větší klastry (N > 10): ν_N se postupně saturuje

- dislokační čára mělká záchytová jáma
- záchyt pozitronu v dislokac
i \rightarrow difúze podél dislokační čáry
- konečný záchyt ve vakanci vázané k dislokaci

'např. Fe hranová dislokace: $\tau = 165$ ps šroubová dislokace: $\tau = 142$ ps

• záchyt pozitronů v dislokacích

 $K_v \ll K_{dl}$ (vakance je bodový defekt, ale dislokace čárový)

 $\delta_{dl} << K_{dv}$ (vždy je dostatečná koncentrace vakancí vázaných k dislokacím)

L.C. Smedskjaer et al., J. Phys. F 10, 2237, (1980)

• záchyt pozitronů v dislokacích

 $K_v \ll K_{dl}$ (vakance je bodový defekt, ale dislokace čárový)

 $\delta_{dl} << K_{dv}$ (vždy je dostatečná koncentrace vakancí vázaných k dislokacím)

- homogenní rozložení dislokací → jednoduchý záchytový model (hcp struktura, kovy s nízkou energií vrstevné chyby)
- dislokační buněčná sub-struktura → diffúzní záchytový model (fcc a bcc kovy s střední a vysokou energií vrstevné chyby)

HPT-deformovaná slitina Mg-10wt.%Gd

200 nm

torzní deformace

HPT deformovaný vzorek

- buněčná dislokační sub-struktura
- dislokační buňky s nízkou hustotou dislokací

Cu deformovaná HPT

- buněčná dislokační sub-struktura
- dislokační buňky s nízkou hustotou dislokací
- oddělené dislokačními stěnami

Cu deformovaná HPT

Defekty v UFG kovech připravených HPT

vzorek	τ ₁ (ps)	I ₁ (ps)	τ ₂ (ps)	l ₂ (ps)	τ ₃ (ps)	I ₃ (ps)	
Cu (105 nm)	-	-	161(3)	64(4)	249(2)	36(4)	
HPT $p = 6$ GPa							
Cu (150 nm)	-	-	164(1)	83(4)	255(4)	17(4)	
HPT $p = 3$ GPa	/						
Fe (115 nm)	+	-	150.9(4)	91(1)	352(6)	9(1)	
HPT $p = 6$ GPa	/						
Ni (120 nm)	-	-	156.4(7)	80(1)	336(7)	20(1)	
HPT $p = 6$ GPa							
volné pozitrony							
střední difúzní délka e ⁺ :							
$L_{+} = 146 \text{ nm}$ dislokacích							
^{II} Grein, boundary v porušených oblastech							
podél hrabic zrn							
=== pozitrony zachycené							
the set	v drobných						
	shlucích vakancí						

Záchyt pozitronů v dislokacích – difúzní záchytový model R termalizace záchyt v dislokacích 1. pozitrony v porušených oblastech pødél hranic zrn $n(r,t) = \frac{1-\eta}{4/3\pi R^3} \frac{R}{r} \sum_{k=1}^{\infty} a_k \frac{\sin(\beta_k r/R)}{\sin \beta_k} e^{-\lambda_k t},$ difúze na hranice zrn $\frac{\partial n}{\partial t} = D_{+} \left(\frac{\partial^2 n}{\partial r^2} + \frac{2}{r} \frac{\partial n}{\partial r} \right) - (\lambda_B + K_v) n,$ $\beta_k \cot \beta_k + \alpha - 1 = 0,$ $a_k = \frac{2\alpha}{\beta_t^2 + \alpha(\alpha - 1)},$ $\alpha = \frac{K_D \delta R}{D}$ $\left(\frac{\partial n}{\partial r}\right)_{r=R} = -\frac{\alpha}{R}n(R,t).$ $\lambda_k = \lambda_B + K_v + \frac{\beta_k^2 D_+}{P^2}.$ $n(r,0) = \frac{1-\eta}{4/3\,\pi R^3}.$ 2. pozitrony v zrnech

záchyt v klastrech

vakancí unvnitř zrn

anihilace ve

volném stavu

$\eta = \frac{(R+\delta)^3 - R^3}{(R+\delta)^3}$ Fitování difúzním modelem objemová frakce porušených oblastí, velikost zrn, hustota dislokací, koncentrace klastrů vakancí

$$\begin{split} N_f(t) &= \oint n(\mathbf{r}, t) d\mathbf{r} = 4\pi \int_0^R n(r, t) r^2 dr \\ N_D &= \eta e^{-\lambda_D t} + 3\alpha (1-\eta) \frac{D_+}{R^2} \\ &\times \sum_{k=1}^\infty a_k \frac{1}{\lambda_k - \lambda_D} (e^{-\lambda_D t} - e^{-\lambda_k t}) \\ N_v &= 3(1-\eta) \alpha \frac{D_+}{R^2} \sum_{k=1}^\infty a_k \frac{K_v (e^{-\lambda_v t} - e^{-\lambda_k t})}{(\lambda_k - \lambda_B - K_v)(\lambda_k - \lambda_v)} \end{split}$$

Fitování difúzním modelem

objemová frakce porušených oblastí, velikost zrn,

hustota dislokací, koncentrace klastrů vakancí

velikost zrn,

hustota dislokací, koncentrace klastrů vakancí

- přímé fitování spektra dob života e^+ difúzním záchytovým modelem
- z fitu získáme mikrostrukturní parametry:
- velikost buněk 2*R*
- střední hustotu dislokací ho
- objemovou frakci dislokačních stěn η
- koncentrace klastrů vakancí c
- podíl šroubových a hranových dislokací f_{screw}

R

HPT deformovaná Cu, p = 3 GPa, N = 6

deformovaný stav

HPT deformovaná Cu, p = 3 GPa, N = 6

130 °C - beze změn

HPT deformovaná Cu, p = 3 GPa, N = 6

160 °C – abnormální růst zrn

HPT deformovaná Cu, p = 3 GPa, N = 6

250 °C – abnormální růst zrn

HPT deformovaná Cu, p = 3 GPa, N = 6

280 °C – začátek rekrystalizace

HPT deformovaná Cu, p = 3 GPa, N = 6

400 °C – plně rekrystalizovaná struktura

HPT deformovaná Cu, p = 3 GPa, N = 6

doby života

HPT deformovaná Cu, p = 3 GPa, N = 6

HPT deformovaná Cu, p = 3 GPa, N = 6

abnormalní růst recrystalizace

Teplota (°C)

HPT deformovaná Cu – vývoj mikrostruktury s teplotou

$$\eta = (\eta_1 - \eta_2) \exp\left(-K_0 \int \exp(-rac{Q}{kT}) \times (T/v_a - t_1)^{n-1} dT
ight) + \eta_2,$$

Měření hustoty dislokací

ocel deformovaná HPT

PAS

- dobrý souhlas PAS a analýzy rozšíření difrakčních píků rtg. záření (XLPA) (XLPA = X-ray line profile analysis)
- hustota dislokací narůstá s deformací a saturuje se při deformaci $e \ge 3$
- převažuje hranový charakter dislokací

XLPA 10 1.0 frakce šroubových dislokací 8 0.8 ρ (10¹⁴ m⁻²) 6 0.6 0.4 0.2 2 hustota dislokací frakce šroubových dislokací 0.0 0 0.1 10 100 1 0.1 1 10 100 deformace deformace

Měření hustoty dislokací

ocel deformovaná HPT

- dobrý souhlas PAS a analýzy rozšíření difrakčních píků rtg. záření (XLPA) (XLPA = X-ray line profile analysis)
- hustota dislokací narůstá s deformací a saturuje se při deformaci $e \ge 3$
- velikost buněk klesá s deformací a saturuje se při deformaci $e \ge 8$ na ≈ 90 nm

Měření hustoty dislokací

hustota dislokací: celková délka dislokačních čar na jednotku objemu: $\rho = \sum l_{disl} / V$