

Ge(Li) Polovodičové detektory

Ge(Li) Polovodičové detektory

Fig. 1. Cross section of the polarimeter. W = thin window, CR = cryostat, C = crystal, T = Teflon insulation, P = crystal holder, F = cold finger.

Ge(Li) Polovodičové detektory

137**Cs**

- krystal vysoce čistého Ge (p typ)
- $c_{\rm imp} < 10^{10} \, {\rm cm}^{-3} = 2 \times 10^{-7} \, {\rm ppm}$

zonální čištění

• planární konfigurace

- koaxiální konfigurace (p-typ)
- n-p přechod na vnějším povrchu
- detekuje γ s E > 50 keV (kvůli n⁺ elektrodě na povrchu)

• koaxiální HPGe detektor

• koaxiální HPGe detektor (p-typ)

¹³⁷Cs

- přirozené pozadí
- srovnání energetického rozlišení:
- scintilační detektory (plastický scintilátor, NaI(Tl)) x polovodičové (HPGe x CdZnTe)

- energetické rozlišení (FWHM)
 - E = 122 keV (55 Fe EC) R = 0.5 1.0 %
 - $E = 1333 \text{ keV} ({}^{60}\text{Co} \beta^{-}) R = 0.14 0.17 \%$
- relativní účinnost (% NaI)

Model Number	Relative Efficiency (%) ≥	Full Width Half Max (FWHM) Resolution (keV)		Peak to Compton Batio	Peak Shape	Endcap diameter
		At 122 keV energy	At 1.3 MeV energy	(P/C)	FWTM/ FWHM	mm (in.)
GC0518	5	0.8	1.8	32	1.90	76 (3.0)
GC1018	10	0.8	1.8	38	1.90	76 (3.0)
GC1020	10	0.9	2.0	34	2.00	76 (3.0)
GC1518	15	0.8	1.8	44	1.90	76 (3.0)
GC1520	15	0.9	2.0	40	2.00	76 (3.0)
GC2018	20	0.8	1.8	50	1.90	76 (3.0)
GC2020	20	0.9	2.0	46	2.00	76 (3.0)
GC2518	25	0.8	1.8	54	1.90	76 (3.0)
GC2520	25	0.9	2.0	50	2.00	76 (3.0)
GC3018	30	0.8	1.8	58	1.90	76 (3.0)
GC3020	30	1.0	2.0	54	2.00	76 (3.0)
GC3518	35	0.9	1.8	60	1.90	76 (3.0)
GC3520	35	1.0	2.0	56	2.00	76 (3.0)
GC4018	40	0.9	1.8	62	1.90	76 (3.0)*
GC4020	40	1.1	2.0	54	2.00	76 (3.0)*
GC4518	45	0.9	1.8	62	1.90	83 (3.25)
GC4520	45	1.1	2.0	54	2.00	83 (3.25)
GC5019 GC5021	50 50	1.0 1.2	1.9 2.1	64 56	1.90 2.00	83 (3.25)* 83 (3.25)*
GC5519	55	1.0	1.9	64	1.90	89 (3.5)
GC5521	55	1.2	2.1	56	2.00	89 (3.5)
GC6020	60	1.1	2.0	66	1.90	89 (3.5)
GC6022	60	1.2	2.2	60	2.00	89 (3.5)

Nábojově citlivý předzesilovač

- vstupní impedance: $R_i C_{det} >> t_{coll}$
- výstupní napětí $V_O \propto \frac{Q_S}{C_f}$

• zisk $A_Q = \frac{dV_O}{dQ_{\varsigma}} \approx \frac{1}{C_f}$

Nábojově citlivý předzesilovač

• zisk $A_Q = \frac{dV_O}{dQ_{\acute{S}}} \approx \frac{1}{C_f}$

511 keV γ-záření

 $\varepsilon_E = \frac{\sigma_E}{E} = \frac{\sigma_N}{N} = \frac{\sqrt{N}}{N} = \frac{1}{\sqrt{N}}$

 $\varepsilon_E = 10\%$

(120 keV)

~ 5000 fotonů emitovaných NaI(Tl) scintilátorem (100 eV/foton)

Poissonovo rozdělení

~ 100 fotonů na fotokatodě (rychlá komponenta) (integrální světelný výstup $BaF_2 20 / 2 \% NaI(Tl)$)

~ 3×10^{8} elektronů na anodě (zisk PMT $G = 10^{7}$, kvantová účinnost katody $\eta = 25\%$), 4 mA max. proud (délka pulsu 30 ns) 0.2 V (pro 50 Ω vstupní impedanci)

$$\sigma_{sig} \approx \sqrt{G\eta \, 100} = 2 \times 10^4 \ e$$

dosažitelný elektronický šum:

 $\sigma_{el} \approx 10 - 1000 \ e$

elektronický šum lze zanedbat

FWHM = 24%

Šum: polovodičové detektory

511 keV
$$\gamma$$
-záření
 \downarrow
~ 173000 párů elektron-díra (Ge ξ = 2.96 eV/e-díra pár)
 \downarrow

vnitřní rozlišení na energii E = 511 keV (fano faktor F = 0.1)

$$\eta_E = \sqrt{\frac{F\xi}{E}} = 0.08\% \longrightarrow \text{FWHM} = 0.96 \text{ keV}$$

fluktuace signálu: $\sigma_{sig} \approx \sqrt{173000 \ F} = 132 \ e$ dosažitelný elektronický šum: $\sigma_{el} \approx 10 - 1000 \ e$

elektronický šum je dominantní

Měření doby úhlových korelací (ACAR)

Měření doby úhlových korelací (ACAR)

Měření Dopplerovského rozšíření

Měření Dopplerovského rozšíření (DB)

Srovnání rozlišení DB × ACAR

• ACAR

$$\theta = \frac{p_T}{m_e c}$$

• neurčitost úhlu
$$\sigma_{\theta} \approx 1 \,\mathrm{mrad} \longrightarrow \sigma_{p_T} \approx \sigma_{\theta} \frac{m_e c^2}{c} \approx 0.5 \frac{\mathrm{keV}}{c}$$

• DB

$$\Delta E = \frac{1}{2} p_L c$$

• neurčit

tost úhlu
$$\sigma_{\Delta E} \approx 1 \,\mathrm{keV} \longrightarrow \sigma_{p_L} \approx \frac{2\sigma_{\Delta E}}{c} \approx 2 \,\frac{\mathrm{keV}}{c}$$

Měření Dopplerovského rozšíření – tvarové parametry

• *S* parametr

$$S = A_{centr} / A_{tot}$$

- referenční vzorek: $S_0 \approx 0.5$
- normalizace: S / S_0
- S míra podílu anihilací e^+ s valenčními e^- (malé ΔE)
- nárůst koncentrace defektů \rightarrow nárůst S parametru

Měření Dopplerovského rozšíření – tvarové parametry

Srovnání s mikrotvrdostí

Měření Dopplerovského rozšíření – tvarové parametry

• *W* parametr

$$W = A_{wings} / A_{tot}$$

- referenční vzorek: $W_0 \approx 0.03$
- normalizace: W / W_0

- *W* míra podílu anihilací e^+ s core e^- (velké ΔE)
- nárůst koncentrace defektů \rightarrow pokles *W* parametru

Měření Dopplerovského rozšíření – S-W plot

Měření Dopplerovského rozšíření – S-W plot

