• pozitrony emitované β^+ zářičem

• střední hloubka průniku
$$\int_{0}^{\infty} z P(z) dz = \frac{1}{\alpha}$$

Příklad:

Mg: $\alpha^{-1} = 154 \ \mu m$ Al: $\alpha^{-1} = 99 \ \mu m$ Cu: $\alpha^{-1} = 30 \ \mu m$

• pravděpodobnost, že pozitron pronikne do hloubky $z P(z) = \alpha e^{-\alpha z}$

$$\alpha \left[\mathrm{cm}^{-1} \right] = 16 \frac{\rho \left[\mathrm{g} \, \mathrm{cm}^{-3} \right]}{E_{\mathrm{max}}^{1.4} \left[\mathrm{MeV} \right]}$$

ho – hustota materiálu $E_{\rm max} = 0.545 \,\,{\rm MeV} \quad ({\rm pro}^{22}{\rm Na})$

některé geometrie moderátorů pozitronů

některé geometrie moderátorů pozitronů

zpětný rozptyl

horizontální desky

transmisní geometrie

účinnost moderátoru:

$$\varepsilon = \frac{N_{thermalizd}}{N_{incident}}$$

 $N_{thermalizd}$ účinnost moderátoru: $\mathcal{E} =$ $N_{incident}$ e` pevný Ne 1e-2 Cold Ne gas finger 1e-3 inlet MODERATION EFFICIENCY 1e-4 W folie 1e-5 1e-6 1e-7 1e-8 1e-9 1955 1960 1965 1970 1975 1980 1985 1990 YEAR

polykrystalická W folie

²²Na zdroj pro svazek pomalých pozitronů

- iThemba Labs (Jižní Afrika)
- 50 mCi = 1.85 GBq
- klasický pozitronový zdroj $A\approx 1~\mathrm{MBq}$
- svazek pomalých pozitronů $A \approx 1$ GBq

²²Na zdroj pro svazek pomalých pozitronů

• okénko - 5 µm Ti fólie

- ²²Na zdroj pro svazek pomalých pozitronů
- okénko 5 µm Ti fólie
- transmisní geometrie moderátoru
- výtěžek pomalých pozitronů

- svazek pomalých pozitronů (Helmholtz-Zentrum Dresden Rossendorf)
- výběr pomalých pozitronů zatočení svazku
- magnetické vedení svazku solenoidy

- svazek pomalých pozitronů (Helmholtz-Zentrum Dresden Rossendorf)
- výběr pomalých pozitronů zatočení svazku
- magnetické vedení svazku solenoidy
- ²²Na pozitronový zdroj + W moderátor

• svazek pomalých pozitronů (MFF UK ²²Na pozitronový zdroj + W moderátor • výběr pomalých pozitronů – zatočení svazku urychlovač • magnetické vedení svazku komora se vzorkem HPGe detektory

Implantační profil monoenergetrických pozitronů

 AE^{r}

 ρ

• monoenergetické pozitrony o energi
i ${\cal E}$

$$P(z,E) = \frac{mz^{m-1}}{z_0^m} \exp\left[-\left(\frac{z}{z_0}\right)^m\right]$$

$$z_0 = \frac{AE^r}{\rho\Gamma\left(1 + \frac{1}{m}\right)} \qquad A = 4 \times 10^{-3} \text{ gcm}^{-2} \text{keV}^{-r}$$
$$m = 2$$
$$r = 1.6$$

• střední hloubka průniku: \overline{z}

Svazek pomalých pozitronů s laditelnou energií

- studium hloubkového profilu defektů
- studium tenkých vrstev
- měření zpětné difůze pozitronů

Charakterizace defektů v Pd

- charakterizace defektů na svazku pozitronů s laditelnou energií
- střední difúzní délka pozitronu: $L_{+} = (151 \pm 4)$ nm

Charakterizace defektů v Pd

- charakterizace defektů na svazku pozitronů s laditelnou energií
- plastická deformace nárůst S, zkrácení L_+

Charakterizace defektů v Pd

- charakterizace defektů na svazku pozitronů s laditelnou energií
- nanokrystalický Pd film záchyt pozitronů v misfit defektech na hranicích zrn

Nb film o tloušťce 1.1 µm pokrytý Pd vrstvou o tloušťce 20 nm

• tloušťka (1100 \pm 50) nm (profilometrie)

 $(1120 \pm 20) \text{ nm} (\text{TEM})$

- sloupcovité krystality
- šířka ≈ 50 nm

Měření zpětné difůze pozitronů

• měření difůzní délky L_+ pozitronu ve studovaném materiálu

• přítomnost defektů \rightarrow zkrácení L_+

• koncentrace defektů:

$$c_{V} = \frac{1}{\nu \tau_{B}} \left(\frac{L_{+,B}^{2}}{L_{+}^{2}} - 1 \right)$$

 $L_{+,B}$ – difůzní délka pozitronů v bezdefektním materiálu $L_{B,+} = \sqrt{D_+ \tau_B}$

v – specifická záchytová rychlost

Měření zpětné difůze pozitronů

• příklad: vakance v FeAl slitinách

• měření doby života pozitronů

$$c_V = \frac{1}{\nu_V} \frac{I_2}{I_1} \left(\frac{1}{\tau_B} - \frac{1}{\tau_V} \right)$$

- komponenta od volných pozitronů nemůže být rozlišena ve spektru dob života pozitronů, když její intenzita je $I_1 < 5\%$ (saturovaný záchyt)
- odpovídá to koncentraci vakancí $c_V > 2 \times 10^{-4}$

$$c_{V} = \frac{1}{\nu_{V}\tau_{B}} \left(\frac{L_{+,B}^{2}}{L_{+}^{2}} - 1\right)$$

- měření zpětné difůze pozitronů
- difůzní délku pozitronů není možné zjistit pokud $L_{\rm +} < 1$ nm
- odpovídá to koncentraci vakancí $c_V > 7 \times 10^{-2}$

Zakalené slitiny Fe-Al – měření doby života pozitronů

Zakalené slitiny Fe-Al – měření doby života pozitronů

- doba života τ_2 pozitronů zachycených ve vakancích
- rostoucí koncentrace Al atomů okolo vakancí

- dvě vrstvy:
- (i) oxid na povrchu 15-20 nm (ii) Fe-Al slitina

Zakalené slitiny Fe-Al – koncentrace vakancí

• Fe₇₅Al₂₅ : měření doby života pozitronů: $c_V = (7.0 \pm 0.5) \times 10^{-5}$ měření zpětné difůze: $c_V = (5 \pm 1) \times 10^{-5}$

Zakalené slitiny Fe-Al – koncentrace vakancí

